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Abstract—The axisymmetric problem of an infinitely long fiber perfectly bonded to an elastic matrix
which contains an annular crack surrounding the fiber is investigated for the case of torsion field.
The problem is formulated as a singular integral equation of the first kind with a Cauchy type kernel
using the integral transform technique. The mode III stress intensity factors at the crack tips are
presented when (a) the inner crack tip is away from the interface and (b) the inner crack tip is at
the interface. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

The problems of an elastic solid with a penny shaped crack or an annular crack in tension
or torsion have been considered by a number of investigators (Sneddon and Lowengrub,
1969 ; Collins, 1962 ; Choi and Shield, 1982 ; Erguven, 1985 ; Selvadurai and Singh, 1985;
Keer and Watts, 1976). Recently the axisymmetric problems of an infinitely long elastic
fiber perfectly bonded to an elastic matrix have been investigated for the case of tension
when an annular crack around the interface exists (Wijeyewickrema et al., 1991;
Santhanam, 1993). For elastic problems involving an axisymmetric crack, the integral
transform method has been employed and the boundary value problem has been converted
into the solution of integral equation (Sneddon and Lowengrub, 1969 ; Keer and Watts,
1976 ; Erguven, 1985 ; Selvadurai and Singh, 1985). Application of such integral transform
method to torsional problems dealing with an annular crack around the interface is not
accomplished vet.

In this paper the axisymmetric problem of an infinitely long fiber embedded in an
infinite matrix with an annular crack surrounding the fiber is considered for the case of
axisymmetric torsional loading (see Fig. 1). The problem is formulated by means of integral
transform and then reduced to a singular integral equation. The resuiting equation is solved
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Fig. 1. An annular crack in the matrix surrounding an elastic fiber.
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by using the numerical scheme proposed by Erdogan ef al. (1972) to obtain the relevant
physical quantities and the mode III stress intensity factors. The mode III stress intensity
factors at the crack tips are presented when (a) the inner crack tip is away from the interface
and (b) the inner crack tip is at the interface.

2. DERIVATION OF THE INTEGRAL EQUATION

An infinitely long elastic fiber of radius a is perfectly bonded to an elastic matrix which
contains an annular crack surrounding the fiber in z = 0 plane, z being the axis of the fiber,
as shown in Fig. 1. The inner and outer radii of the annular crack are  and c, respectively,
(b < ¢ < o). A uniform angle of rotation per unit axial length 6, is applied to the system
at z = £ oo and the matrix is unconstrained at r = co. The required solution is obtained by
the superposition of the solution of two related problems. In first problem the perfectly
bonded fiber and matrix in the absence of the annular crack are subjected to the uniform
angle of rotation per unit axial length 6,, while the matrix is allowed to deform freely at
r = o0. The first problem can be solved without much difficulty and the stress fields are
given in Appendix A. The matrix stresses required for the second problem are 67,
(r,0) = u,0,r where u, is the shear modulus of the matrix. The stresses applied to the crack
surfaces in second problem are those equal and opposite to the stress o3, (r, 0). Therefore in
this paper it is assumed that the crack surface is subjected to quasistatic axisymmetric
torsional loads as follows:

65, (r,0) = —p(r), b<r<ec §))

The f-components uy(r,z) (i = 1,2) of the displacement vectors in the fiber and the
matrix are the only unknown functions, which satisfy the following differential equations:

SPuy  10uy, uy & up

ot rdr o 52

=0, i=1,2 03]

where the superscripts i = 1 and i = 2 represent the fiber and the matrix zones, respectively.
The two nonvanishing components of the stress tensors in the fiber and the matrix are given
by

. ou
e(r,2) = u,-a—j 3)
. oy
oia(r.2) = i (g; - ”—) @

where u, and y, are the shear moduli of the fiber and the matrix, respectively. Since z = 0
is a plane of symmetry, the semi-infinite domain (z > 0) is considered. Following the
method described in Keer and Watts (1976), the solution of eqn (2) for the fiber and the
matrix satisfying the condition of regularity at r =0 and r = oo, respectively, may be
expressed as

u(r,z) = Joc A, (He =T, (rs)ds+ %wal ()1, (rs) sin zs ds (5

0 0

ui(r,z) = Jm A,(s)e *J,(rs)ds+ %'rofz(s)Kl (rs)sinzsds (6)

0 0

where f,(s), /2(s), A,(s) and 4,(s) are unknown, J,() is the Bessel function of the first kind
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of order » and I,() and K,() are the modified Bessel functions of the first and second kinds
of order n, respectively. From (3) and (4) the relevant stress components are found to be

ob(r,2) = 1 [- J S, (e, (rs) ds + %J 1)1, (75) cos 2s ds] ™)
0h(r,2) = pa [ - r Ay (e, () dst f S 0K (15 cos s ds} ®)
0(r,2) = 1 [— J sy (e () ds + > J ()2 (rs) sin zs ds] ©)
54(,2) = [— f Ay ()T () ds— f () Ka(rs) sin zs ds]. (10)

In the crack problem shown in Fig. 1, the interface conditions between the fiber and
the matrix are

ola,z) = al(a,z), ui(a,z) =ui(a,z) (11)

while the plane z = 0 is subjected to the conditions
65,(r,0) = —p(r), b<r<c (12)
uy(r,0) =0, 0<r<a wr0=0 a<r<b c<r<ow. 13)

From eqn (5) and the first eqn of (13), 4,(s) = 0. The interface conditions (11) may
be used to eliminate two of f(s) and f5(s) and the mixed boundary conditions (12) and (13)
may be used to obtain a system of dual integral equations for the unknown A4,(s). Thus,
using eqns (5), (6), (9) and (10), the interface conditions (11) may be expressed as

X o)

U %Jw sf1(8)1(as) sinzsds = uz[—I

0 0

2
sA,(s)e”*J,(as)ds— ;J

0

sf>(s) K, (as) sin zs dsj|

(14)

%Jmfl (5)1,(as) sinzsds = Jw As(s)e *J, (as)ds+ %Jmfz (K, (as)sinzsds. (15)

0 0 i}

Now, rather than substituting f,(s) given by these two equations into eqn (12) and obtaining
a system of dual integral equations for the unknown A,(s), the problem may be reduced to
a singular integral equation in terms of a new unknown function as described in Keer and
Watts (1976), defined by

G(r) = ra{lué(r, 0)}, b<r<e. (16)
or|r

From eqn (6),
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G(r) = — Jw 5A,(8)J,(rs) ds. (17

0

From eqns (6), (13), (16) and (17) it follows that

Ay(s) = — JC 1G()J,(st)dt. (18)

b
Taking the Fourier sine transforms of eqns (14) and (15), and using the formulae found in

Erdelyi (1954), one is led to the following simultaneous equations for the unknown functions
f1(s) and f5(s) in terms of the yet undetermined function G(¢) as follows:

mf ()1 (as) + () K, (as) = JC tG(0 1, (as) K, (st) dt (19)

b

S (as)—f2(9)K, (as) = j (G, (as)Ky (1) dt 20)

b

where m = pu,/u,. Solving eqns (19) and (20), f,(s) and f5(s) can be expressed as

[ {1, (as)K,(as) + K, (as) I, (as) } K, (s1)
S = L GO Ky @s) + mL @)K, @) 2
[ (1—m)l, (as)I,(as) K (s1)
f(9) = L 16 I (as)K,(asy +ml, (as)K, (as) (22)

From eqns (8), (12) and (22), after substituting for f;(s) the following integral equation is
obtained :

JC [L +k(r, t):|G(t) dt = — np(r)’ b<r<c (23)
t—r u

b 2

where the kernel k(r, 1) is given by

k(r,t) = k,(r, £)+ 2tk (r, 1) (24)
_m(r,)—1  m(r,1)
ky(r,t) = T P 25
2 _ 2 2 2
le(r/t)—E(r/t)Jr ;E(r/t)—t trr K@), r<t
mr, 1) = 2y (26)
T 1K(/r) — EQt/n]+ E(r]1), r>t
!
ky(r,t) = r ky(r,t,5)ds 7
K(rot.s) = K, (rs) (1—m)I,(as)I,(as)K;(st) 28)

I, (as)K, (as) +ml,(as)K, (as)
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where K and E are the complete elliptic integrals of first and second kind, respectively. The
expressions of the infinite integrals used in this part of the analysis are given in Erdelyi
(1954). It is seen that for a — o0, k,(r, ¢) vanishes and the integral equation reduces to that
of the antiplane shear problem of two bonded elastic half planes containing a crack
perpendicular to the interface (Erdogan and Cook, 1974). From eqn (13) and definition
(16) it is clear that the integral equation must be solved under the following constraint
condition :

f @ dr=0. 29)

b

The physical significance of eqn (29) is that the crack tips are closed at & and c.

The mode I1I stress intensity factors at the crack tips are calculated for the two cases ;
i.e. (a) the inner crack tip is away from the interface and (b) the inner crack tip is at the
interface.

2.1. Inner crack tip away from the interface

When the inner crack tip is located away from the interface, i.e. & > q, a close exam-
ination of the kernel k(r, t) defined by eqns (23)—(28) shows that the first part k,(r, ?) has a
simple logarithmic singularity of the form log|r—r|, whereas the second part k,(r,?) is
bounded in the closed interval & <(r, ) < ¢ provided a < b < ¢. In this case the Cauchy
kernel 1/(t—r) is the dominant kernel, the index of the integral equation is +1 and the
solution of eqn (23) has the form (Erdogan et al., 1972)

G(r) = g. (N[ —b)(c—n]~'7? (30)
and hence a numerical technique such as that described in Erdogan et al. (1972) may be

used to determine the unknown function g,(r) which is bounded in the closed interval
b <(r,1) < c. Thus, defining the following normalized quantities,

c—b b+c c—b b+c

r=2p+2,t=21+2, 31

G(r) = ¢1(p) = Fi(p)(1=p*)~'"2, p(r) = u2 P(p), (32)
c—b

K(p,1) = Tk(r, 1) (33)

eqns (23) and (29) may be expressed as

ilF,(r,-)[ ! —+—K(pj,ri)]=P(pj), j=1,...,n=1 (34)

i=1h Ti—p

&1 Fi(1) _
,»; nt{c—b)2+(b+c)2

(3%

where

p;=cos—, j=1,...,n—1 (36)
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After solving eqns (34) and (35) the mode 11T stress intensity factors which are defined
by

Ku(b) = lim ./ 2(r—b)03.(r, 0),
Ku(0) = lim /2= 0)a.(r,0), (37

may be obtained as follows:

K (b) = lim \/2(r—5)G(r) = \/(c—b)[2F (= 1)
Kui(0) = lim \/2(r—c)G(r) = —/(c—b)/2F, (1) (38)

where F,(—1) and F,(1) are obtained from F,(z) (i =1,...,n) by using the quadratic
extrapolation formulas.

2.2. Inner crack tip at the interface

For the case b = ¢, i.e. when the inner crack tip is at the interface, k,(r, 1) given by eqn
(27) is no longer bounded for all r, 7 in the closed interval [b, ¢]. It is noted that the kernels
of the integral equations are infinite integrals which have a rather slow rate of convergence.
The convergence can be improved by subtracting the slowly convergent parts of the inte-
grand which are the leading terms in its asymptotic expansion. These slowly convergent
terms can be evaluated in closed form, thereby leading to a rapidly converging infinite
integral which can be evaluated numerically along with a closed form expression. By adding
and subtracting the asymptotic value of K,(r,t,s) for large values of s, k,(r,r) may be
expressed as the sum of two parts as follows :

kyf(r.0) = ky(r, ) +koilr, 1) (39

where k,(r, 1) is bounded in the corresponding closed interval and becomes unbounded as
rand ¢ approach the end point b = a. After some manipulations the asymptotic expressions
for the integrand and the singular part of the kernel k,(r, ¢} are found to be

|
kzs(r, [) = J‘ m ds [e_(y+1~2a)x_ M

(e\(r+t—2a)s _e—er)]

o 1+m 2\/7, s
[~m 1 1 2c
T l+m 2\/7,[r+t—2¢1—a(r’ HIn <r+t—2a>] 40y
where
3(1/ 1—m S 1
a(r, t) = §{2(41—+—r; +6>— ? — ;} (41)

It should be noted that the singular kernels (40) is essentially the same as the expression
found for the corresponding antiplane shear problem considered in Erdogan and Cook
(1974) as a, r and t — 0.

The integral eqn (23) is now of the form
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f%(t:dw f 2k, t)G(t)dt+f{k,(r, )+ 2tkry(r, D} G(1) dt = — %(r). @)

a a a

Equation (42) is a singular integral equation with a generalized Cauchy kernel for which
the following solution form is assumed

G(r) = g.(N(c—r)*(r—a)®, a<r<e, —1<Re(p)<0. 43)

Employing the technique given by Erdogan er al. (1972), the following characteristic
equations are obtained to determine o and f:

cot(na) =0 (44)
cos(nf) + E% - 0. (45)

It is noted that eqns (44) and (45) are identical to those obtained in antiplane shear case
(Erdogan and Cook, 1974). Equation (44) yields « = — 1/2 which is well known singularity
for crack tip surrounded by a homogeneous medium. The real constant £ is a function of
the material properties of the fiber and matrix. Normalizing the interval [a, c] by defining

c—a a+c c—a a+c

r=mpt . t= gt (46)
G(r) = ¢:(p) = F2(p)(1—p)* (1 +p)',  p(r) = p2 P(p), (47)
Hip,) = 522k (1), Halp) = ki (a0 + 20} (48)
we obtain
J {ﬁ +H,(p,0)+ Ha (0, r)}Fz @1 - +00dt= —nP(p).  @9)
The constraint condition (29) yields the equation
[ e,

The singular integral equation with a generalized Cauchy kernel (49) along with the
constraint condition (50) is solved using a Gauss—Jacobi integration formula (Erdogan et
al., 1972).

The mode I1I stress intensity factors are defined by

KIII(C) = l}_g} AV 2("—6')0'62;2(", 0)! (51)
Ku(a) = lim2"2(a—r) "o, (r, 0). (52)

Making use of the fact that the left-hand-side of eqn (23) yields an expression for 63,(r, 0)
(r > ¢), it can be shown that
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Ku(e) = =2 (c—a)’gy(c) = —lim2'7(c—r) *G(r) = =27 {{c—a)/2}'F,(1)
(53)

o4,(r,0) is obtained from eqns (7) and (21) and the following expression is obtained for
Kiyi(a) as described in Erdogan and Cook (1974).

Kin(@) =27 u*(c —a)’g(a) = p*lim2"2(r—a) P G(r) = p*{(c—a)/2} PF,(-1)
(54

where

12
ut = (Z—) —(m)", (55)

Quadratic extrapolation was used to obtain F5(1) and F,(—1).

3. RESULTS AND DISCUSSION

When the inner crack tip is away from the interface, i.e. when both the crack tips have
square-root singularities, the normalized mode 111 stress intensity factors are defined by

m(b) = F(—1), 1(0) = Km(C)

Toal Oal

Kiu(b) =

= —Fi(1), (56)

where a; =(¢—b)/2. Figures 2 and 3 show the normalized mode 111 stress intensity factors
for the ratios a/c = 0.5 and 0.8 under stress distribution t = 74r/c Where 1, = u,0,¢, respec-
tively. When the size of the crack is very small, i.e. when b/c — 1.0, the mode III stress
intensity factors are not sensitive to the presence of the fiber neither are they influenced by
the radius of the fiber for all values of m; Kj;(b) and Ky (c) — 1.0, which is the result for
the case of a crack in a homogeneous, isotropic matrix in antiplane shear. When m > 1,
K1 (b) < Kiu(c), which implies that the crack would propagate outward from the center.
For a given crack size, i.e. for fixed b/c, both K, (h) and Kj;;(c) decrease with increasing m.
To investigate the reduction to the antiplane shear problem (Erdogan and Cook, 1974) for
a — o0, we consider material pairs for which the modulus ratio m = 23.08 and 0.043. Figure
4 shows the normalized mode III stress intensity factors for the ratios a/(c—a) = 10 and
50, respectively. It is seen that the normalized mode I1I stress intensity factors approach to
that of antiplane shear problem (Erdogan and Cook, 1974) as a/(c —a) increases.

When the inner crack tip is at the interface, the normalized mode III stress intensity
factors are defined by

K[H K[ll
@) =)t (-1 Ko = ) =

Tods

—2'2*PF, (1), (57)

1/2
oy

where @, =(c—a)/2. Form = 1/7,1/2, 1.0, 2.0 and 7.0. f takes the values —0.770, —0.608,
—0.5, —0.392, —0.230, respectively. The normalized mode 111 stress intensity factors are
given in Fig. 5. Kj;(a) decreases with decreasing m, but the inner crack tip singularity
decreases with decreasing m and hence it is not possible to compare Kj;(a) for the different
ratios of m. For a given value of m, when the position of the outer crack tip is held fixed,
Ki1(a) decreases as the radius of the fiber gets smaller. Since the outer crack tip singularity
1s independent of m, Kj;(c) increases with decreasing m. When a/c — 0, where ¢ is finite

and a -0, Kj;(c) —>4\/§/(3n), which is the solution for the penny shaped crack in a
homogeneous, isotropic matrix. For m = 1.0 only, Kj;(c) = 1.0 as a/c — 1.0 since K7j;(c) is
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Fig. 2. (a) SIF when the inner crack tip is away from the interface, a/c = 0.5; (b) SIF when the
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Fig. 3. (a) SIF when the inner crack tip is away from the interface, a/c = 0.8; (b) SIF when the
inner crack tip is away from the interface, a/c = 0.8.
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Annular crack surrounding an elastic fiber
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dependent on f as shown in eqn (57). For the comparison with the results of Choi and
Shield (1982) for the annular crack in the homogeneous medium, let

KIII (b)

2’ m(c) =

Kin(c)

172 7

m(b) =

(58)

ToC ToC

Both curves K{;;(b) and K{;(c) for the case m = 1.0 agree well with the results of Choi and
Shield (1982) as shown in Fig. 6.
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APPENDIX A

When the fiber and matrix are subjected to a uniform angle of rotation per unit axial length 8, at z = +
and the matrix is unconstrained at r = o0, stress fields can be derived as follows :

. cu;
h(r,2) =y,3u§ i=12 (A1)
o w
ols(r.2) = u,< — —) i=1.2 (A2)
Interface conditions at r = a
6,5(a,2) = 055(a, 2) (A3)
uy(a,2) = wi(a,2). (Ad)

Angle of rotation per unit axial length is uniform in each zone regardless of » and z.

8 (uy(r.z
6, :—<ﬂ*(’—)> =12 (A3)
0z r
where 6, is uniform in each zone.
From these equations it follows that
uy(r.z) =0z+c)r, i=1,2. (A6)
Since z = 0 is a plane of symmetry,
=0, i=1,2

From the interface condition (A4),
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6, =0, =0,

From above it follows that
up(r,z) = Bgrz, i=1,2. (A7)
This displacement fields satisfy the interface condition (A3) as follows
6)(a,2) = ak(a,z) = 0.
From egn (A1) it follows that
05.(r,z) = wber, i=1,2, (A8)

where y, and g, are the shear moduli of the fiber and the matrix, respectively.



